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Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that has serious consequences on livestock production and

trade. In Australia, preparedness and planning includes the development of decision-support tools that would assist priority setting and

resource management in the event of an incursion. In this paper we describe an integrated modelling approach using geographic

information system (GIS) technology to assess the risk of wind-borne spread of FMD virus. The approach involves linking an intra-farm

virus production model, a wind transport and dispersal model, and an exposure-risk model to identify and rank farms at risk of wind-borne

infection of FMD. This will assist authorities by enabling resources for activities like surveillance and vaccination to be allocated on the

basis of risk.
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1. Introduction

Foot-and-mouth disease (FMD) is a highly contagious

disease of livestock that would have serious consequences

were it to occur in a country like Australia [1]. This is not

only due to the productivity losses associated with the

disease itself, but also due to the restrictions to trade that

result [2]. A recent study by the Australian Productivity

Commission concluded that an FMD outbreak would result

in immediate closure of many of Australia’s major export

markets. The cumulative loss in export and domestic

market revenues would be around $5.7 billion for a single

point outbreak, rising to around $13 billion for an outbreak

lasting 12 months [3].

Recent outbreaks of FMD in countries like the United

Kingdom [4] and the Netherlands in 2001 [5] have

highlighted the resource requirements needed to manage

an outbreak of a disease like FMD and have emphasised

the importance of having well-thought-out contingency

plans to ensure effective and efficient allocation of these

resources. In recognition of the significant consequences,

Australia invests considerable resources in FMD preven-

tion and planning. Part of this preparedness includes the

development of decision-support tools that would assist

priority setting and resource management in the event of an

incursion.

In this report we describe an integrated modelling

approach using geographic information system (GIS)

technology to assess the risk of wind-borne spread of

FMD virus. The approach builds on an earlier work [6] and

is designed to enhance outbreak management by identify-

ing and prioritising farms at risk of wind-borne infection of

FMD. This will assist authorities by enabling resources for

activities like surveillance and vaccination to be directed

and allocated on the basis of risk.

2. Description of the approach

FMD may be spread by a variety of routes, with

movement of infected animals considered the most

important [7, 8]. Under the right conditions FMD virus

carried by wind may spread infection over long distances

[6]. Although this situation may be an uncommon event

requiring the right combination of virus strain, environ-

ment and suitable weather conditions [9Y11], it is of

particular concern as it cannot be controlled by the normal

measures that are put in place during an outbreak.

Recognising this, several countries have developed models

that simulate wind-borne spread of FMD virus over short

and long distances (e.g., [6, 9, 11Y14]). However, manag-

ing this threat requires more than just predicting where

virus may have spread to.

From an operational perspective, to assess the risk of

wind-borne spread from a recently identified infected

premise (IP), three issues need to be considered:

� The amount of airborne virus produced on the IP over

the period from when it was infected to when it was

reported.

� The area(s) that may have been exposed to airborne

virus Y direction, distance and virus concentrations need

to be identified.* Corresponding author.
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� The probabilities that farms exposed to airborne virus

may have become infected need to be assessed.

The first requires that the pattern of spread on the IP be

recreated and the amount of airborne virus produced over

the period be estimated. The second requires an assessment

of the weather conditions that would affect the survival,

dilution and dispersal of the virus in the air, to identify

areas and farms that have been potentially exposed to

infection. The third component requires an evaluation of

the probabilities that farms could have become infected

based on the amount of virus to which they have been

exposed. We have developed an integrated modelling

approach that addresses these components. It includes an

intra-farm virus production model, a wind transport and

dispersal model, and an exposure-risk model. The applica-

tion runs within a GIS framework (MapInfo Corporation,

Troy, NY, USA) that permits ready visualisation of virus

plumes and analysis of premises at risk. In this paper we

will briefly review the epidemiology of FMD and describe

the methods used in the integrated model.

2.1. Natural history of FMD infection

Animals exposed to FMD incubate the virus for a period

before they show clinical signs of disease, although the

disease may not always be apparent clinically, especially in

sheep [7, 8]. Animals excrete virus and are capable of

spreading infection at or shortly before the appearance of

clinical signs [8]. Animals infected with FMD virus may

die, although mortality rates are usually low, except in very

young animals [7], or go on to recover and are then

immune to reinfection. Over time, the immunity wanes and

animals can become susceptible again. A proportion of

recovered cattle and sheep, but not pigs, may continue to

excrete virus after they have recovered, referred to as

Fcarrier_ animals [15]. Although carriers have been impli-

cated in field outbreaks, the risk that these animals pose for

spreading infection is still unclear [8, 15, 16].

2.2. Intra-farm virus production model

To assess the risk posed by wind-borne spread from an

IP, one needs to estimate daily virus production. During a

real epidemic, the actual starting point for this exercise is

likely to be when a high-risk premise (one with large

numbers and high concentrations of animals, like a piggery

or feedlot) is found to be infected. As soon as the IP has

been found, it is assumed that authorities will undertake

appropriate action to eliminate the risk. Under Australian

contingency plans for FMD [17], this involves quarantine

of IPs and compulsory slaughter of all infected and

exposed susceptible animals. Thus, it is the period from

infection to removal that is of concern. By estimating how

and when the IP became infected, it is possible to use an

epidemiological model to recreate the spread of disease

and estimate the number of animals infected and the

amount of virus excreted on each day from when the

infection was introduced until it was found.

In modelling terms, the period from initial infection to

when an animal begins excreting virus is the latent period.

The period during which infected animals excrete virus and

are thus capable of spreading the infection is called the

infectious period. The period over which recovered

animals are immune to reinfection is the immune period.

Intra-herd spread of FMD is modelled using a determin-

istic state-transition simulation model developed from a

Markov chain. It is based on the approach described in an

earlier model of rinderpest [18]. Briefly, in a state-transition

model, animals in the study population (the herd or flock)

can be considered to be in one of several mutually exclusive

Fstates_. There are five basic disease-related states:

1. Susceptible Y able to be infected

2. Latent Y infected but not yet infectious to other animals

3. Infectious Y infected with the disease and capable of

spreading infection to other animals

4. Immune Y after recovery from the disease

5. Dead Y as a result of the disease

During any time period, depending on various factors,

an animal may remain in that state or move to another state

(a Ftransition_). Figure 1 shows, diagrammatically, the

states and transitions in the basic model. Further states can

be added to take into account additional factors like

vaccination where this may be used.

The probability of a susceptible animal becoming

infected is a function of the number of infected animals

in the herd and the effective contact rate (ECR). ECR is

defined as the expected number of animals with which one

virus-excreting animal will make sufficiently close contact

that disease transmission could occur within a given period

[18]. This parameter is difficult to estimate directly, but

SUSCEPTIBLE LATENT

INFECTIOUSIMMUNE

DEAD

Figure 1. States (boxes) and transitions (arrows) in intra-herd FMD

model.
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can be derived from incidence data) and values can be

adjusted so that the results conform with a known disease

situation [18].

Default values used for key model parameters are given

in table 1. The model takes into account the decrease in the

latent period as the number of infected animals in the herd,

and hence total virus to which susceptible animals are

exposed to, increases. Clinical signs of the disease will

become apparent 1Y2 days after virus excretion has com-

menced and may persist after the virus ceases. The model

also allows for daily virus production from infected

animals to vary with time during the virus excretion

period, consistent with experimental observations [9].

To recreate an on-farm outbreak, it is necessary to

provide information about how and when the infection was

introduced. The user specifies:

� Species (cattle, sheep or pigs)

� The size of the flock or herd,

� The estimated time of infection (how many days ago)

� The number on initially infected animals and whether

these were incubating or infectious at the time

� The number of animals or proportion of the herd that is

affected at the time of inspection

� Effective contact rate between animals on the farm

Where an IP has more than one species on it, virus

production is modelled separately for each species group.

Virus production is measured in tissue culture infectious

dose50 units (TCID50). One TCID50 is the amount of virus

that will infect 50% of exposed tissue cultures and is

assumed to be directly proportional to the number of

infectious virus particles present in a sample [19]. The time

and source of infection would be estimated from age of

lesions [20, 21] and farm history. If the source is believed

to be introduction of infected animals, they could have

been incubating or infectious at the time of introduction.

Depending on when they were infected, it is necessary to

estimate how many days these source animals would have

left in the latent or infectious phase of the disease. If the

source is believed to be a contaminated product or

equipment, then the initially exposed animal(s) begin as

incubating rather than infectious, and the latent period is

randomly set. The number of animals affected at the time

of inspection is based on animals showing clinical

evidence of disease. The model generates a daily break-

down of the status of animals in the herd and total aerosol

virus production, with ECR being adjusted until the

simulation reproduces the observed number of clinical

cases at the time of inspection. The model provides an

average or expected daily virus production regime that fits

the input parameters. This output, together with the timing

of the infection and point location of the IP (latitude and

longitude), is used as the input for the wind dispersal

modelling.

2.3. Wind transport and dispersion model

The transport and dispersion of FMD virus is modelled

by the Australian Bureau of Meteorology (BOM), using a

model called HYSPLIT [22, 23]. This is a general model

designed to use gridded wind data from numerical weather

prediction models or three-dimensional numerical analyses

as input. It can be run in either a puff mode or particle

mode, or in a combination of the two. In the puff mode, a

single puff is released with either a Gaussian or top-hat

probability distribution, and when the puff has grown to

exceed the size of the meteorological grid, it is split into

smaller puffs. In the particle mode, a fixed number of

particles is released.

For FMD applications, HYSPLIT is used in the particle

mode. The meteorological fields are obtained from the

Australian Bureau of Meteorology’s operational model, the

Limited Area Prediction System (LAPS) [24], whose

domain covers all of Australia (from latitude j55-S to

4.875-N and longitude 95.0-E to 169.875-E); the hori-

zontal resolution is 0.125- (approximately 12.5 km) and

there are 29 vertical levels with 11 levels within the lowest

1,500 m. The meteorological fields at each horizontal grid

point are interpolated at 3-hourly intervals to a terrain-

following coordinate system from the pressure-sigma

surfaces of LAPS. The vertical motion field is included in

the meteorological data. The trajectories of the particles are

computed using a modified Euler technique. The integra-

tion time step is variable (between 1 min and 1 h) during

the simulation. The time step is chosen based on the

vertical grid spacing, the vertical velocity variance and the

vertical Lagrangian time scale (assumed to be 100 s), and

Table 1

Default parameters used in intra-farm FMD model.

Cattle Sheep Pigs Source

Latent period (days) 8 7 5 8, 34

Infectious period (days) 7 7 7 7, 8, 16, 21

Period over which clinical signs are apparent (days) 11 6 10 20, 21

Mortality (%) 5% 5% 15% 7, 8

Maximum daily airborne virus production (TCID50) 104.3 104.3 106.1 9, 10, 34

Period of airborne virus excretion (days) 5 4 6 9, 10, 21, 34

M.G. Garner et al. / Wind-borne spread of FMD



is constrained so that the advection distance per time-step

is less than the grid spacing.

In the present simulations (which used three process-

ors), 8,640 Lagrangian particles per day were released at 1-

m height. These particles were transported with the mean

wind plus a random component of motion to account for

atmospheric turbulence. Thus, the cluster of particles

expands in time and space. The stratification of the

atmosphere is calculated from the meteorological data

and this information allows the vertical and horizontal

mixing coefficients, dependent on thermal stability, to be

calculated [22]. The turbulent velocity variance profiles are

specified through similarity theory relationships [25, 26].

Particle dispersion is calculated following the approach

of Fay et al. [27]. The turbulent velocity components are

dependent on the auto-correlation coefficient, which is a

function of the time step, the horizontal and vertical

Lagrangian time scales, and a computer-generated random

component. Particle concentrations are calculated as the

sum of the virus mass within a grid cell. The cell is defined

at the centre of the node and extends halfway to the

adjacent nodes. Full reflection is assumed for particles that

intersect the ground or the model top (assumed to be

10,000 m for these simulations).

The concentration grid spacing used for the simulations

was 0.01- (approximately 1 km) and the grid span was 1.5-
(approximately 150 km). The 24-h concentrations are

computed at 1-m height. A dry deposition velocity (Vdry)

of 0.01 m sj1 is assumed in the simulations. Wet

deposition includes in-cloud scavenging and below-cloud

scavenging. The wet deposition velocity Vwet (used to

calculate the in-cloud scavenging) is given by SP where S
is the averaging scavenging ratio 3.2 � 105 by volume and
P is the precipitation rate. The below-cloud removal
constant (sj1) is given by 5 � 10j5 (1.0 j Fb), where Fb

is the fraction of the polluted layer that is above the cloud
bottom.

A virus decay constant is used to simulate the effect of

biological ageing. We have adopted the value of the

exponential decay constant l (sj1) suggested by Sørensen

et al. [9], l = 6.4 � 10j4r, where r is the virus decay rate

for bovine fluids of 0.5 (hj1).

The viability of the virus is dependent on both

temperature and humidity [6, 9]. We use a linear decrease

in virus concentrations to account for the temperature

effect. We multiply the concentrations at temperatures

24-C and below by 1, but apply a linear decrease to the

concentrations for temperatures above 24-C, so that at

30-C and above we multiply the concentrations by 0. For

humidity, we use an exponential decrease in concentra-

tions. For relative humidity of 60% or higher, we multiply

the concentrations by 1. The concentrations decrease

exponentially as the relative humidity falls below 60%,

so that at 1% relative humidity (the lowest value allowed)

we multiply the concentration by 0.0000376. (At a rela-

tive humidity of 20% we multiply the concentration by

0.001.)

The outputs of this modelling are spatial plots of virus

concentration at 1-m height in log10 TCID50/m3 (showing

a minimum concentration down to 10j6), in ArcView

shapefile format (ESRI, Redlands, CA, USA). These plots

are available daily for the duration of the period of concern

and as a cumulative exposure for the whole exposure

period.

2.4. Exposure-risk model

Establishment of infection in a susceptible animal

depends on the dose of airborne virus to which it is

exposed. This exposure dose depends on the concentration

of virus in the air, the air sampling capacity of the animal

and the period of exposure [28]. When looking at the risk

of infection from airborne FMD virus, a commonly used

concept is that of minimum infectious dose, e.g., [29],

which can be defined as the minimum amount of virus to

cause infection (or disease).

Sutmoller and Vose [30] have discussed the issue of

minimum infectious dose and recognise that the concept of

a minimum threshold, below which an animal will not

become infected if exposed, is not particularly useful for

quantifying biological risks. The term infective dose

should always be qualified with some probability level

that indicates the proportion of animals that might

succumb, as strictly speaking, even a single virus particle

is sufficient to infect an animal although with a minute

probability [6].

Cannon and Garner [6] used a binomial distribution to

describe the probability of infection. The probability of

infection to a low dose of virus is small, but increases with

the size of the dose. The probability (Pi) that an animal will

be infected when exposed to a given virus dose d in

TCID50 is given by

Pi ¼ 1� 1� �ð Þd ð1Þ

where q is the probability that one TCID50 will infect an
animal.

There is a limited amount of data on response to

different aerosol doses and that which is available usually

involves experiments on only small numbers of animals.

Using maximum likelihood estimation, the probabilities

that exposure to one infectious unit (IU) of virus would

result in infection was estimated for calves and sheep [6],

based on data from earlier studies [31, 32]. French et al.

Table 2

Default values used in exposure-risk model.

Cattle Sheep Pigs Source

Air sampling volume (m3/24 h) 160 12 50 9, 10

Probability that one virus particle

will infect an animal

0.031 0.045 0.003 6, 10,

19
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[19] used a stochastic approach to analyse the same data

and median estimates of q were 0.031 for cattle and 0.045

for sheep. There is less information available for pigs

although it is well recognised that pigs are relatively

resistant to airborne FMD virus [8, 10, 29]. The minimum

dose of airborne virus to infect a pig is estimated to be

more than 800 TCID50 [10]. If we conservatively assume

that a dose of 800 TCID50 has a 95% probability of

infecting a pig, then q for pigs can be estimated at about

0.003.

The probability that a group of animals (herd) becomes

infected depends not only on the virus dose to which

animals are exposed but also on the group size Y the larger

the group, the greater the probability that at least one

Figure 2. Study region. The cross (near the town of Tara) shows the location of the infected pig farm used in the outbreak scenario.
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animal in the group will become infected. The probability

(Ph) that a herd is infected is given by:

Ph ¼ 1� ð1� PiÞn ð2Þ

where n = herd size.

Using equations (1) and (2), the risks that farms exposed

to virus plumes can become infected can be calculated. To

take into account that there may be more than one species

present and to allow for exposure on multiple days, we

used the following formula.

Ph ¼ 1�
Yj

i¼1

1� �ið Þni

Xm

k¼1

dk

 !" #
ð3Þ

where i = species (sheep, cattle, pigs); k = day; d =
exposure dose; n = number of animals of that species on
the farm.

An application has been written in MapBasic (MapInfo

Corporation) that overlays the virus concentration plots

from the HYSPLIT model onto a digital map of the

outbreak region showing farm boundaries. This application

identifies those farms under the virus plume and calculates

the probability of infection for each of these farms based

on the type and number of livestock present. Table 2 shows

the default values for calculating exposure doses and

probabilities of infection. Based on these probabilities, a

relative risk ranking (high, medium, low and very low) is

applied. These rankings correspond to calculated probabil-

ities of infection of greater than 50, 10j50, 1j10 and less

than 1%, respectively. The results are presented in tabular

and map formats.

3. Validation

Model validation is defined as a process of assessing the

accuracy of model output and ensuring the usefulness and

relevance of the model [33]. This implies that the

assumptions underlying the model are correct and that the

model representation of the study system is reasonable for

the intended purpose. A more comprehensive view of

validity considers Fdata validity_, or the correctness of the

data used to construct and parameterise the model;

Fconceptual validity_, or the correctness of the mathemat-

ical and epidemiological logic upon which the model is

built; and Foperational validity_, or the ability of the model,

as implemented, to produce results of sufficient accuracy

[34]. Verification is a separate process to establish that the

logic upon which the model is based has been correctly

written down as code. [34].

Data validity is usually not considered to be part of

model validation but is still important because it can be a

factor affecting the ability to validate a model [34]. To

build a model, adequate data is required to understand the

problem and develop mathematical and logical relation-

ships. In this study, we have used real data wherever

possible Y farm distribution and demographics, and

weather data are based on actual records. For key model

parameters like virus excretion rates, susceptibilities to

infection, and virus decay rates, we have largely relied on

published values from field or experimental studies.

However, this data is not perfect, e.g. the animal virus

dose-response data for estimating risk of infection is quite

limited and incomplete.

Conceptual model validity is defined as determining

that the theories and assumptions underlying the concep-

tual model is correct and that the model representation of

the study system is reasonable for the intended purpose

[34]. Here we are concerned with an integrated modelling

system that is designed to identify and rank farms at risk of

wind-borne infection of FMD to assist with disease

management. A lack of experience with FMD under

Australian conditions, and limited data from overseas

outbreaks, mean that validation is a difficult issue.

However, the modelling methods used are well described

in the literature. The disease model is based on a relatively

simple, well-established approach to simulating disease

spread that is considered suitable for studying livestock

diseases, including FMD (e.g., [18, 35Y39]). One of the

most critical components is the model’s ability to deter-

Table 3

Infected farm profile and outbreak scenario details.

Parameter Value

Farm ID 3518

Farm type Intensive piggery

Area (km2) 1.01

Farm size (N) 11,000

Estimated contact rate (animals/day)a 40

Time to detection (days) 8

a Number of pigs coming into contact with each infected pig sufficiently

close that disease transmission could occur.
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Figure 3. Simulated epidemic curve and estimated virus production by

day from infected pig farm.
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mine where to and in what quantities the virus is

transported. Specific validation studies of the HYSPLIT

wind-dispersal model for trajectories [the first Aerosol

Characterization Experiment (ACE)] and concentrations

[the Across North America Tracer Experiment (ANA-

TEX)], deposition (simulation of the Chernobyl accident),

Figure 4. Virus plume diagrams by day, with virus concentrations for July outbreak. Source farm location is shown as a black cross.
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and volcanic ash (Rabaul eruption) have been reported

[40]. Additional validation of concentrations is given in a

report of the European Tracer Experiment (ETEX) [41].

From an operational perspective, the key output of the

model is to identify and rank farms that may have been

exposed to wind-borne FMD virus so that they can be dealt

with in a logical order based on risk of infection. The risk-

exposure model is based on accepted risk assessment

principles [19, 30] and the approach produces outcomes

that are consistent with field observations. That is, cattle

herds are more susceptible to airborne infection than sheep

flocks and large herds are at greater risk than small herds

(e.g., [12, 42Y44]), with pigs being relatively resistant to

infection [10]. The distances downwind for which farms

are at risk are also within the range of field observations [6,

9, 12, 45].

Figure 5. Exposed farms by risk ranking for July outbreak.

Figure 6. Cumulative virus exposure over the period of virus excretion, by season.
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Model verification was undertaken by asking an

independent epidemiologist to re-read each line of code

and evaluate its correctness. In addition, programming

tools like structured programming were used. This is a

code writing and formatting technique that assists with

minimising the occurrence of syntax errors that do not

prevent the program from compiling.

4. Application

The integrated modelling approach was evaluated by

studying a hypothetical infection, with the same outbreak

strain as that in the UK in 2001 [4], on an Australian farm

using real weather data. The study region comprised an

area of approximately 178,600 km2 in southern Queens-

land. We used a spatial farm dataset (12,872 land parcels)

provided by the Queensland Department of Primary

Industries (figure 2). This temperate medium-broad acre

region of Australia contains 4,196 beef cattle farms, 238

dairy farms, 204 sheep farms, 1,145 beef/sheep farms, 167

pig farms, 2,967 small holders (defined as having less than

50 animals) and 70 beef-cattle feedlots.

A previous study has shown that, even under optimal

meteorological conditions, the risk of wind-borne spread

from infected cattle and sheep with the UK strain is low Y
even 1,000 infected sheep or cattle would only pose a

threat to animal less than 1 km downwind [46]. Accord-

ingly, in this study, we restricted our potential infected

source herds to piggeries. A pig farm was randomly

selected from the study population to be the IP. A plausible

outbreak scenario, in terms of rate of spread within the

farm and time to detection of the infection on the farm, was

used. It is assumed that infection begins on the IP with

introduction of three infected pigs from an outside source.

The disease spreads in the piggery from these source

animals and is not confirmed until 8 days after infection.

The farm animals are slaughtered on day 9. The outbreak is

assumed to have occurred in July (Winter). Further

information on the source farm and outbreak scenario are

provided in table 3.

To assess seasonal effects, we repeated the scenario at

three other times of the year Y January, April and October Y
corresponding to the Southern Hemisphere Summer,

Autumn and Spring seasons.

Meteorological data. The weather data for study was the

latest data available from the Australia Bureau of

Meteorology at the time of the analysis. It consisted of

gridded data of winds, temperature, humidity, and rainfall

at approximately 12.5-km resolution at 3-hourly intervals

for October 2003, January 2004, April 2004 and July

2004.

5. Results

Figure 3 shows simulated epidemic curve and virus

production by day on the IP over the period from when

infection is introduced until the case is reported.

Figure 4 shows plume diagrams with virus concentra-

tion isopleths, by day, for the period up until FMD is

reported, for the July scenario (i.e., Winter). It is apparent

that the areas exposed to wind-borne virus varied over the

period. This is a function of both the spread of infection on

the IP and daily meteorological conditions. The estimated

risk of infection for exposed farms is shown in figure 5. In

all, 139 farms containing susceptible livestock were

exposed to wind-borne virus with 10 of these (7.2%) rated

as a medium or high risk. The higher-risk farms tend to be

closer to the source IP; however, there are some excep-

tions. For example, the two land parcels rated as medium

risk approximately 40 km northeast of the IP in figure 5

comprise a very large intensive pig enterprise with 140,000

pigs. The two high-risk land parcels 27 km to the northwest

of the IP are part of a larger mixed beefYsheep enterprise

with other land parcels close to the IP.

5.1. Effect of season

Figure 6 shows the same scenario repeated in different

seasons. The numbers of farms by risk category are shown

in table 4. July (Winter) represented the season with the

most farms at risk of infection from wind-borne FMD

followed by January (Summer) and October (Spring). In

terms of the number of farms at greatest risk, i.e. ranked as

high and medium risk, Spring had the highest number,

followed by April (Autumn). With all other things being

equal, the differences in the size of the exposed areas and

numbers of farms at risk are functions of the seasonal

weather conditions. The meteorological factors affecting

the dispersion are mainly the wind speed and the height of

the boundary layer, i.e., the height of the turbulent mixing

layer. Figure 7 shows plots of wind speed and direction for

each of the seasons. In general, the highest wind speeds

were found in January (Summer) and July (Winter), and

the lowest wind speeds were in the transitional seasons of

April and October. The height of the boundary layer,

shown in figure 8, was generally lowest in July (Winter)

and January (Summer), and highest in the transitional

seasons. The low values of boundary-layer height in

January (Summer) reflect wet soil conditions and cloudi-

ness during the wet season (during times of drought the

Table 4

Number of exposed farms by risk category, by season.

Season Category

High Medium Low Very Low

Summer 4 7 39 85

Autumn 6 7 16 46

Winter 5 5 19 110

Spring 6 10 26 83
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boundary-layer height during January would be expected to

be higher.) The product of wind speed and boundary-layer

height is a measure of the turbulent mixing.

Note that figures 6Y8 show Bsnapshots^ of the model

results for different seasons to indicate the variation over

the course of the year. They are not seasonal average values.

Figure 7. Wind speed and direction at 10-m height at the closest model grid point to the IP, by season.

Figure 8. Boundary-layer heights at the closest model grid point to the IP, by season.
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6. Discussion

A previous study has identified that weather conditions

will not be a limiting factor for the potential spread of

FMD for much of Australia [6]. The risk will depend on

strain of virus, strength of the source and density of

livestock exposed downwind. We describe an integrated

modelling approach that can be used to identify areas

exposed to wind-borne FMD virus and provide a rational

basis for identifying and ranking farms at risk. It is based

on specialised inputs from animal health and meteorolog-

ical agencies that are linked through a GIS interface.

For a user like a disease manager to have confidence in

a model, it is important that its limitations are recognised.

Although FMD has been studied widely, there are several

areas that are not well understood. For example, the animal

virus dose-response data for estimating risk of infection is

based on limited studies, usually with only a small number

of animals and involving short-term exposure to airborne

virus so it cannot be assumed that these findings can be

extrapolated to 24-h averages [10]. The data for pigs, in

particular, can be considered very conservative, as recent

experimental studies have shown that pigs exposed to

concentrations of virus up to 2,500 TCID50/m3 over a 24-

h period were not infected although 1 out of the 10 pigs

exposed did develop a borderline antibody response [29].

The approach also depends on the ability to recreate the

pattern of virus excretion on infected farms. This depends

on spread within the farm, and the ECR value used will

affect the shape of the virus production curve. ECR is

recognised as one of the most difficult parameters to

estimate [18]. It can be expected to vary depending on

factors like species, season, animal density, management

systems, etc. The virus production model has been set up

such that ECR is modified until the simulated output

matches the field situation based on history and numbers of

clinically affected animals present at the time of inspec-

tion. Theaccuracy of this approach will depend on obtaining a

good history to estimate how and when FMD was introduced

onto the farm, and on the ability to recognise affected animals.

Thus, it will be less appropriate for use with sheep, where

clinical signs in infected animals may be less apparent or

absent. However, previous studies [6, 46] have shown that,

even under optimal meteorological conditions, the risk of

wind-borne spread from infected cattle and sheep farms is

low. The highest risk of wind-borne spread of virus will

come from large aggregations of intensively managed

animals where disease is likely to spread rapidly. Under

Australian conditions, these are most likely to be pigs

(especially large piggeries) and, to a lesser extent, intensive

cattle production (beef feedlots and large dairy farms).

Importantly, the approach takes into account that

� Virus production from infected animals varies with

stage of the disease. For example, in cattle and pigs

maximal virus production occurs in the early clinical

stages of the disease, when vesicles first appear [10, 47].

� Spread of virus depends on the weather conditions at

the time so that the number and distribution of farms

exposed varies over time.

� Probability of infection depends on the type and

number of animals exposed on farms as well as

concentration of virus in the air.

Although we present a method for quantifying the risk,

because of the many uncertainties in the process, the

calculated probabilities of infection for exposed farms

should be considered relative, not absolute. Uncertainties

arise, because in the absence of data about when animals

on an infected farm actually become infected and start

shedding virus, it is necessary to estimate daily virus

production retrospectively.

The virus production model generates a generalised

epidemic curve that is consistent with the observed

situation but may not necessarily reflect the true pattern

of spread on-farm. In addition, dose-response data for

estimating risk of infection is based on limited studies, as

discussed above. It is for these reasons we have chosen to

present the findings in terms of risk scores. The sensitivity

of the model results to parameter choices and dependences

will be examined in a future paper.

The approach provides a rational basis for assessing the

risk that wind-borne spread of infection from infected

premises may have occurred and thus a basis for allocating,

possibly scarce, resources to surveillance and control

activities. In actual outbreaks it is also important to

recognise that wind-borne spread is just one of the potential

pathways of spread that will need to be taken into account

when setting surveillance and control priorities.

Although Winter is traditionally assumed to be the

worst season for pollutant dispersion (because of the lower

boundary-layer heights), in the period simulated in this

study this was not the case due to the relatively high wind

speeds encountered at this time.
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