The advection of a particle or puff is computed from the average of the threedimensional velocity vectors at the initial-position $\mathrm{P}(\mathrm{t})$ and the first-guess position $\mathrm{P}^{\prime}(\mathrm{t}+\Delta \mathrm{t})$.

The velocity vectors are linearly interpolated in both space and time.
The first guess position is: $\mathrm{P}_{(t+\Delta t)}^{\prime}=\mathrm{P}_{(t)}+\mathrm{V}_{(\mathrm{P}, \mathrm{t})} \Delta t$
The second guess position is: $\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta t\right)} \Delta \mathrm{t}$
The final position is: $\mathrm{P}_{(\mathrm{t}+\Delta t)}=\mathrm{P}_{(\mathrm{t})}+0.5\left[\mathrm{~V}_{(\mathrm{P}, \mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\mathrm{P}}, t+\Delta t\right)}\right] \Delta \mathrm{t}$

The advection of a particle or puff is computed from the average of the threedimensional velocity vectors at the initial-position $\mathrm{P}(\mathrm{t})$ and the first-guess position $\mathrm{P}^{\prime}(\mathrm{t}+\Delta \mathrm{t})$.

The velocity vectors are linearly interpolated in both space and time.
The first guess position is: $\mathrm{P}_{(t+\Delta t)}^{\prime}=\mathrm{P}_{(t)}+\mathrm{V}_{(\mathrm{P}, \mathrm{t})} \Delta t$
The second guess position is: $\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta t\right)} \Delta \mathrm{t}$
The final position is: $\mathrm{P}_{(\mathrm{t}+\Delta t)}=\mathrm{P}_{(\mathrm{t})}+0.5\left[\mathrm{~V}_{(\mathrm{P}, \mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\mathrm{P}}, t+\Delta t\right)}\right] \Delta \mathrm{t}$

The advection of a particle or puff is computed from the average of the threedimensional velocity vectors at the initial-position $\mathrm{P}(\mathrm{t})$ and the first-guess position $\mathrm{P}^{\prime}(\mathrm{t}+\Delta \mathrm{t})$.

The velocity vectors are linearly interpolated in both space and time.
The first guess position is: $\mathrm{P}_{(t+\Delta t)}^{\prime}=\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{(\mathrm{P}, \mathrm{t})} \Delta \mathrm{t}$
The second guess position is: $\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta\right)} \Delta \mathrm{t}$
The final position is: $\mathrm{P}_{(t+\Delta t)}=\mathrm{P}_{(t)}+0.5\left[\mathrm{~V}_{(\mathrm{P}, \mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta t\right)}\right] \Delta \mathrm{t}$

The advection of a particle or puff is computed from the average of the threedimensional velocity vectors at the initial-position $\mathrm{P}(\mathrm{t})$ and the first-guess position $\mathrm{P}^{\prime}(\mathrm{t}+\Delta \mathrm{t})$.

The velocity vectors are linearly interpolated in both space and time.
The first guess position is: $\mathrm{P}_{(t+\Delta t)}^{\prime}=\mathrm{P}_{(t)}+\mathrm{V}_{(\mathrm{P}, \mathrm{t})} \Delta t$
The second guess position is: $\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta\right)} \Delta \mathrm{t}$
The final position is: $\mathrm{P}_{(t+\Delta t)}=\mathrm{P}_{(t)}+0.5\left[\mathrm{~V}_{(\mathrm{P}, \mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta t\right)}\right] \Delta \mathrm{t}$

The advection of a particle or puff is computed from the average of the threedimensional velocity vectors at the initial-position $\mathrm{P}(\mathrm{t})$ and the first-guess position $\mathrm{P}^{\prime}(\mathrm{t}+\Delta \mathrm{t})$.

The velocity vectors are linearly interpolated in both space and time.
The first guess position is: $\mathrm{P}_{(t+\Delta t)}^{\prime}=\mathrm{P}_{(t)}+\mathrm{V}_{(\mathrm{P}, \mathrm{t})} \Delta t$
The second guess position is: $\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta\right)} \Delta \mathrm{t}$
The final position is: $\mathrm{P}_{(\mathrm{t}+\Delta t)}=\mathrm{P}_{(\mathrm{t})}+0.5\left[\mathrm{~V}_{(\mathrm{P}, \mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\mathrm{P}}, t+\Delta t\right)}\right] \Delta \mathrm{t}$

The advection of a particle or puff is computed from the average of the threedimensional velocity vectors at the initial-position $\mathrm{P}(\mathrm{t})$ and the first-guess position $\mathrm{P}^{\prime}(\mathrm{t}+\Delta \mathrm{t})$.

The velocity vectors are linearly interpolated in both space and time.
The first guess position is: $\mathrm{P}_{(t+\Delta t)}^{\prime}=\mathrm{P}_{(t)}+\mathrm{V}_{(\mathrm{P}, \mathrm{t})} \Delta t$
The second guess position is: $\mathrm{P}_{(\mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta\right)} \Delta \mathrm{t}$
The final position is: $\mathrm{P}_{(t+\Delta t)}=\mathrm{P}_{(t)}+0.5\left[\mathrm{~V}_{(\mathrm{P}, \mathrm{t})}+\mathrm{V}_{\left(\mathrm{P}^{\prime}, t+\Delta t\right)}\right] \Delta \mathrm{t}$

