The advection of a particle or puff is computed from the average of the three-dimensional velocity vectors at the initial-position \(P(t) \) and the first-guess position \(P'(t+\Delta t) \).

The velocity vectors are linearly interpolated in both space and time.

The first guess position is: \(P'(t+\Delta t) = P(t) + V_{(P,t)} \Delta t \)

The second guess position is: \(P(t) + V_{(P',t+\Delta t)} \Delta t \)

The final position is: \(P(t+\Delta t) = P(t) + 0.5 \left[V_{(P,t)} + V_{(P',t+\Delta t)} \right] \Delta t \)
The advection of a particle or puff is computed from the average of the three-dimensional velocity vectors at the initial-position \(P(t) \) and the first-guess position \(P'(t+\Delta t) \).

The velocity vectors are linearly interpolated in both space and time.

The first guess position is:

\[
P'(t+\Delta t) = P(t) + V(P,t) \Delta t
\]

The second guess position is:

\[
P(t) + V(P',t+\Delta t) \Delta t
\]

The final position is:

\[
P(t+\Delta t) = P(t) + 0.5 \left[V(P,t) + V(P',t+\Delta t) \right] \Delta t
\]
The advection of a particle or puff is computed from the average of the three-dimensional velocity vectors at the initial-position $P(t)$ and the first-guess position $P'(t+\Delta t)$.

The velocity vectors are linearly interpolated in both space and time.

The first guess position is: $P'(t+\Delta t) = P(t) + V_{(P,t)} \Delta t$

The second guess position is: $P(t) + V_{(P',t+\Delta t)} \Delta t$

The final position is: $P(t+\Delta t) = P(t) + 0.5 \left[V_{(P,t)} + V_{(P',t+\Delta t)} \right] \Delta t$
The advection of a particle or puff is computed from the average of the three-dimensional velocity vectors at the initial-position $P(t)$ and the first-guess position $P'(t+\Delta t)$.

The velocity vectors are linearly interpolated in both space and time.

The first guess position is: $P'(t+\Delta t) = P(t) + V(P,t) \Delta t$

The second guess position is: $P(t) + V(P',t+\Delta t) \Delta t$

The final position is: $P(t+\Delta t) = P(t) + 0.5 [V(P,t) + V(P',t+\Delta t)] \Delta t$
The advection of a particle or puff is computed from the average of the three-dimensional velocity vectors at the initial-position $P(t)$ and the first-guess position $P'(t+\Delta t)$.

The velocity vectors are linearly interpolated in both space and time.

The first guess position is: $P'(t+\Delta t) = P(t) + V(P,t) \Delta t$

The second guess position is: $P(t) + V(P',t+\Delta t) \Delta t$

The final position is: $P(t+\Delta t) = P(t) + 0.5 \left[V(P,t) + V(P',t+\Delta t) \right] \Delta t$
The advection of a particle or puff is computed from the average of the three-dimensional velocity vectors at the initial-position \(P(t) \) and the first-guess position \(P'(t+\Delta t) \).

The velocity vectors are linearly interpolated in both space and time.

The first guess position is: \(P'(t+\Delta t) = P(t) + V_{(P,t)} \Delta t \)

The second guess position is: \(P(t) + V_{(P',t+\Delta t)} \Delta t \)

The final position is: \(P(t+\Delta t) = P(t) + 0.5 \left[V_{(P,t)} + V_{(P',t+\Delta t)} \right] \Delta t \)