Radioactive pollutants and dose

HYSPLIT Workshop 2022, Jun. 17, 2022 Version 5.2.1 (revision 1694)

Tianfeng Chai, NOAA/ARL

HYSPLIT Nuclear Applications

"The scientific foundation and inspiration for" HYSPLIT's trajectory capabilities can be traced back to 1949, when the Special Project Section (SPS) (ARL's predecessor) of the U.S. Weather Bureau [now NOAA's National Weather Service (*NWS*)] was charged with trying to find the source of radioactive debris originating from the first Soviet atomic test and detected by a reconnaissance aircraft near the Kamchatka Peninsula", Stein et al. (2015) 10.1175/BAMS-D-14-00110.2)

Illustration of particulate cesium-137 concentrations originated from the Fukushima Daiichi reactor. Draxler and Rolph (2012)

CTBTO On-demand Operation and RSMC Emergency Response activities

NOAA Backtracking support to Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) using HYSPLIT (On-demand Operation)

Regional Specialized Meteorological Centres (RSMCs) designated by WMO for Nuclear Emergency Response. 🏠

· 10000

Radioactive pollutants and dose- Notes

Radioactive decay

Calculated during transport or post-processed

Dose calculation

- Cloudshine air concentration
- Groundshine deposition
- Using surrogates for multiple radionuclides

Activity.txt file

- can be used to calculate total dose from a large amount of radionuclides
- Emissions need to be decay-corrected with a reference time (e.g. reactor shutdown time)
- TCM approach may be needed for forecasts

Transfer Coefficient Matrix approach

- The simulation is divided into smaller time segments and each segment is an independent calculation using a unit source emission.
- The set of calculations for all emission times is defined as the Transfer Coefficient Matrix (TCM).
- * When quantitative results are required, the actual air concentrations and depositions are computed in a simple postprocessing step by multiplying the TCM by the appropriate timevarying emission rates and radioactive decay constant for each relevant radionuclide.
- Allows updated forecasts to be quickly produced when new emissions estimates are made available

Fukushima source term estimation using TCM

.

Data source	Number of monitoring stations	Count of total samples
СТВТ	14	417 (421)
EPAR	19 (20)	35 (39)
EURO	78 (80)	785 (797)
EXTR	4	59 (61)
Total	115 (118)	1296 (1318)

$$\mathcal{F} = \frac{1}{2} \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{i=1}^{I} \frac{(q_{ikt} - q_{ikt}^{b})^{2}}{\sigma_{ikt}^{2}} + \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{M} \frac{(c_{nm}^{h} - c_{nm}^{o})^{2}}{\epsilon_{nm}^{2}} + \mathcal{F}_{other}$$

Transfer coefficient matrix (TCM)

Source term estimation using air concentration measurements and a Lagrangian dispersion model–Experiments with pseudo and real cesium-137, T Chai, R Draxler, A Stein – *Atmos. Environ.*, 2015